Fluid/Corrosion Compatibility Reference Table CODE Suitable Under Normal Circumstances 1 Acceptable 2 Not Recommended 3 No Information; Test Before Using 0 PERFORMANCE THE ORIGINAL SINCE 1997 800-270-0333 The following chart indicates the general compatibility of **PARAGON PERFORMANCE** hose and fittings with a variety of media being conveyed. These *recommendations* are intended as a **guide only** and can be effected by many factors in the operating parameters of the actual application, such as media and ambient temperature, pressure, media concentration, exposure time, and exposure to other media. Additional factors will effect hose and fitting selection for a specific application, such as gaseous effusion, potential for static discharge, system impulse spikes, proper assembly length for a dynamic flexing or static flexed system application, etc. **NOTE:** These tables are based on fitting compatibility ratings at 70° F; higher temperatures may have an adverse effect. (Consult **PARAGON PERFORMANCE** for details on specific applications) | MEDIA | WILL. | SPO WAS | 3/3/ | 2000 | 153/C | MEDIA | SILIN | W ON ON | 3/3/ | Sept. | 153/
15/
15/
15/
15/ | MEDIA | WILL. | OF OF WA | 33 | - Constant | 14 14 10H | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|-----------------------|------------------|-------------|-------------|----------------------------------|---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Acetaldehyde
Acetic Acid, Glacial
Acetic Acid 30%
Acetic Anhydride
Acetone | 1
0
3
3
1 | 1 0 3 3 1 | 1 | 1 2 2 2 1 | 1 1 1 1 1 | Barium Chloride
Barium Hydroxide
Barium Sulfate
Barium Sulfide
Beer | 2
0
2
3
1 | 3 2 1 3 2 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 | Caliche Liquors
Cane Sugar Liquors
Carbonic Acide
Carbon Dioxide
Carbon Disulfide | 0
2
3
1
2 | 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1
0 | | Acetyl Chloride (COLD)
Acetylene
Acrylontrile
Air
Alcohols | 2 2 0 1 1 | 3
0
1
1 | 2 1 1 1 1 1 | 2 1 1 1 1 1 | 1
1
1
1 | Beet Sugar Liquors
Benzene, Benzol
Benzene
Benzene Sulfonic
Acid | 0 1 1 0 | 1 2 1 3 | 1 1 1 0 | 1 | 1 1 1 0 | Carbonic Acid
Carbon Monoxide
Carbon Tetrachloride
Castor Oil
Caustic Soda | 3
1
2
1
3 | 3 1 3 1 2 | 1 2 1 | 1 1 2 1 1 | 1
1
1
1 | | Alum. Ammonion or
Potassium
Alum. Acetate
Aluminum Bromide
Aluminum Chloride | 3 3 3 | 3 0 3 3 | 2 1 2 2 | 2 1 2 2 | 1
1
1 | Benzaldehyde
Benzine
Benzoic Acid 70°
Benzol
Benzyl Alcohol | 0
1
1
1
0 | 1 1 1 1 1 | 0 1 1 1 1 1 | 1 1 1 | 1 1 1 1 1 | Celiosolve Acetate
Celiosolve Butyl
Celiube
Celiuguard
Chevron Fr-10,13,20.8 | 0
0
1
1
1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 | | Aluminum Fluoride
Aluminum Hydroxide
Aluminum Nitrate
Aluminum Salts
Aluminum Sulfate | 3
1
0
0
3 | 3
0
3
0
3 | 2
1
1
2
3 | 2
1
1
2
2 | 1 1 1 1 1 | Benzyl Benzoate
Benzyl Chloride
Bismuth Carbonate
Black Sulfate Liquor
Black Furnace Gas | 0
0
0
0 | 1 1 1 1 1 | 1 0 1 1 1 | 1 0 1 1 1 1 | 1 1 1 1 1 | Chlorinate Parraffin &
Petroleum Oil
Chlorine, Gaseous, Dry
Chlorine, Gaseous, Wet
Chlorine Trifluoride | 1
2
3
0 | 1 2 3 3 | 1
3
3
0 | 1 3 3 0 | 1
1
1
0 | | Ammonia Anhydrous
Ammonia Aquebus
Ammonium Carbonate
Ammonium Chloride
Ammonium Hydroxide | 0
3
0
3
3 | 1 0 1 0 2 | 1 1 1 2 1 | 1 1 2 1 | 1
1
0
1 | Borax
Bordeaux Mixture
Boric Acid
Brine
Bromine, Dry | 2
0
3
3
3 | 2 0 3 0 3 | 1 1 2 0 3 | 1 1 0 3 | 1 1 1 1 3 | Chlorine Water
Chloracetic Acid
Chlorobenzene
Chlorobromomethane
Chloroform | 1
2
1
1
1 | 2 3 1 1 1 1 | 0 3 1 1 1 1 | 0 3 1 1 1 1 | 1
1
1
1 | | Ammonium Metaphosphate
Ammonium Nitrate
Ammonium Nitrate
Ammonium Persulfate
Ammonium Phosphate | 0
3
0
0 | 1
1
0
0
3 | 1 1 1 1 2 | 1 1 1 1 | 1
1
0
0
1 | Bunker, Oil
Butadiene
Butane
Buttermilk
Butter Oil | 1
1
1
3
1 | 1 0 1 3 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | O-Chloronaphthalene
Chlorosulfonic Acid
Chlorotaluene
Chromic Acid
Citric Acid | 1
0
1
3
3 | 1 1 3 3 | 1
0
1
3
3 | 1 0 1 2 1 | 1
1
1
1 | | Ammonium Sulfate
Ammonium Thiocyanate
Amyl Acetate
Amyl Alcohol
Amyl Chloride | 3
0
1
1
0 | 1
1
3
1
0 | 1 1 1 1 1 | 1 1 1 1 | 1
1
1
1 | Butyric Acid
Butyl Acetate
Butyl Alcohol
Butyl Amine
Butyl Carbitol | 2
1
1
1
1 | 3 2 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | Citgo, Pacemaker FR,
Glyco, FR15,20,25
Cod Liver Oil
Coke Oven Gas
Copper Chloride | 1
1
0
3 | 1 1 1 3 | 1 1 1 3 | 1 1 1 1 | 1 1 1 1 | | Amyl Chloronaphthalene
Amyl Naphthalene
Aniline
Aniline Dyes
Aniline Hydrochloride | 0
0
3
0
3 | 0 0 2 3 0 | 1 1 1 1 3 | 1 1 1 3 | 1
1
1
1 | Butyl Stearate
Butyl Mercaptan
Butyraldehyde
Calcium Acetate
Calcium Bisulfate | 1
0
1
1
3 | 1 0 0 1 0 | 1 1 0 1 2 | 1 1 0 1 1 | 1 1 1 1 | Copper Cyanide
Copper Nitrate
Copper Sulfate
Corn Oil
Corn Syrup | 3
0
3
1
0 | 0 1 3 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1 | | Animal Fats
Asphalts
Aqua Regia
Arsenic Acid
Askarel | 0
0
0
0 | 1 0 0 2 1 | 1 3 0 1 | 1 3 1 1 | 1
1
1
1
0 | Calcium Bisulfate Calcium Carbonate Calcium Chlorate Calcium Chlorate Calcium Hydroxide | 0
1
0
2
2 | 0 1 0 3 3 | 1 1 2 2 3 | 1 1 1 1 1 | 1
1
1
1
1 | Cottonseed Oil
Creosote
Cresol
Cresylic Acid
Crude Oil | 1
3
0
0 | 1 2 2 1 3 | 1 1 1 1 3 | 1 1 1 1 2 | 1
1
1
1 | | Atmosphere Industrial
Atmosphere Marine
Atmosphere Rural
Automotive Brake Fluid
B arium Carbonate | 0
2
1
1 | 3 3 1 2 | 1
3
3
1
1 | 1 3 1 1 1 | 1
3
1
1 | Calcium Hypochlorite
Calcium Nitrate
Calcium Silicate
Calcium Sulfate
Calcium Sulfide | 3
1
1
1 | 0
1
1
1 | 3 1 1 1 1 | 2 1 1 1 1 1 | 1 1 1 1 1 | Crude Wax
Cutting Oil
Cyclohexane
Cyclohexanone
Cymene | 1
1
1
0
1 | 1
1
1
0
0 | 1 1 1 1 0 | 1
1
1
1
0 | 1
1
1
1 | ## Fluid/Corrosion Compatibility Reference Table 800-270-0333 Suitable Under Normal Circumstances 1 Acceptable 2 Not Recommended 3 No Information; Test Before Using 0 | MEDIA | SILING | AND SHA | 3/ | Sales . | 15 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 /5 | MEDIA | ALIM | AND ON THE STATE OF O | 3/ | STATE OF THE PARTY | | MEDIA | HIM | WAS ON STATE | 1/0/05/ | The state of s | 23 C C C C C C C C C | |--|-----------------------|-----------------------|-----------------------|-----------------------|---|--|-----------------------|--|-------------|--|-----------------------|--|-----------------------|-----------------------|-----------|--|--| | Dasco FR-150,200,310
Dasco FR-300
Dasco IFR
Decalin
Denatured Alcohol | 1 1 1 1 1 | 1 1 1 0 1 | 1 1 0 1 | 1 1 0 1 | 1 1 1 1 1 1 | Ferrous Chloride
Ferrous Nitrate
Ferrous Sulfate
Fluoroboric Acid
Formaldehyde | 2 0 2 0 1 | 3
0
3
0
0 | 1 1 1 1 1 | 2 1 1 1 1 1 | 1 1 1 1 1 1 | Hydrochloric Acid
Concentrated
Hydrofluosilicic Acid
Hydrogen, Gaseous
Hydrogen Peroxide, 70% | 3
3
1
3 | 3 0 1 3 | 3 3 1 2 | 3 3 1 1 | 1 1 1 1 1 | | Diacetone
Diacetone Alcohol
Dibenzyl Ether
Diburyl Ether
Dibutyl Phthalate | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1 | Formic Acid
Freon 12
Freon 114
Fruit Juices
Fuel Oil | 2
0
0
0 | 3 3 3 2 | 2 1 1 1 2 | 1 1 1 1 2 | 1
2
2
1
1 | Hydrogen Sulfide,
Gaseous
Hydrolube
H-515 (NATO)
Hydroquinone | 3
1
1
0 | 3
1
1
0 | 2 1 1 1 1 | 1 1 1 1 | 1
1
1
0 | | Dibutyl Sebacate Dichlorobenzene Dichloroethane (dry) Diesel Oil Diethylamine | 1 1 3 1 1 | 0 0 3 1 0 | 0
1
3
1 | 0
1
3
1 | 1
1
3
1 | Fumaric Acid
Furon Furfuran
Furfural
Fyrequel 90,150,220,
300,550,1000 | 0 1 1 1 | 0 1 2 1 | 1 1 1 1 | 1 1 1 1 | 0 1 1 1 1 | Imol
Isobutyl Alcohol
Iso Octane
Iso Octane
Isopropyl Acetate | 1
2
1
1
1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 | | Diethyl Ether
Diethylene Glycol
Diethyl Phthalate
Diethyl Sebacate
Di-Isobutylene | 1 1 1 1 | 1 1 0 0 0 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1
0 | Fyrguard 150,150-M,200
Fyre-Safe 225,211
Fyre-Safe W/O
Fyre-Safe 1090E, 1150,
1220,1300E,1550E | 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 1 | Isopropyl Alcohol
Isopropyl Ether
JP3 and JP4
Kerosene
Ketones | 2
1
1
1
0 | 1
1
1
1
0 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | | Di-losprpyl Ketone
Dimethyl Aniline
Dimethyl Formamide
Dimethyl Phthalate
Dioctyl Phthalate | 1 1 0 1 1 | 0 0 1 0 1 | 1 0 1 0 1 | 1 0 1 0 1 | 1
1
0
1 | Gallic Acid
Gasoline
Glauber's Salt
Gelatin
Glucose | 0
1
0
0 | 3
2
1
3
1 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
0
1 | Lacquers Lacquers Solvents Lactic Acids Lard Lead Acetate | 1 1 2 3 1 | 3
3
1
2 | 3 2 1 1 | 1 1 1 1 | 1 1 1 1 1 | | Dioxane
Dipentene
Dow Corning DC200,
510,550,560,FC1265
Dowtherm A,E | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | Glue
Glycerin
Glycerin, Glycerol
Glycols
Grease | 3
1
0
1
1 | 2 2 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 | Lead Nitrate
Lime
Lime Bleach
Lime Sulpher
Linoleic Acid | 0 0 0 0 | 1
2
3
3
0 | 1 1 2 2 0 | 1 1 2 0 | 0
1
0
2
1 | | Duro AW-16,31
Duro FR-HD
Ethanol
Ethanolamine
Ethers | 1 1 1 1 1 | 1 1 3 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1 | Green Sulfate Liquors
Gulf-FR Fluid
Gulf-FR Fluid
P37,P40,P43,P45-P47
Gulf, FR Fluid | 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 | Linseed Oil
Lindol HF
Lubricating Oils,
Petroleum
Magnesium Chloride | 1 1 2 | 1 1 3 | 1 1 1 2 | 1 1 1 1 | 1 1 1 1 | | Ethyl Acetate Ethyl Acetoacetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene | 1 1 0 2 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1
0
1 | G150,G100,G250,G200 Heptane n-Hexaldehyde Hexane Hexane | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 | Magnesium Hydroxide
Magnesium Sulfate
Malic Acid
Mercuric Chloride
Mercury | 0
1
0
3
3 | 1 2 2 3 1 | 1 1 2 1 1 | 1 1 1 1 | 1
1
1
1 | | Ethyl Cellulose
Ethyl Chloride
Ethyl Dichloride
Ethyl Ether
Ethyl Mercaptan | 1
2
1
1
0 | 1
2
0
2
2 | 1
1
0
1
0 | 1 1 0 1 0 | 1
1
1
1 | Hexyl Alcohol
HF-20
Houghto-Safe 271 to 640
Houghto-Safe
5046, 5045W | 2 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | Methanol
Mesityl Oxide
Methyl Acetate
Methyl Acrylate
Methyl Alcohol | 1 1 1 1 2 | 0 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
1
0
1 | | Ethyl Pentochlorobenzene
Ethyl Silicate
Ethylene Chloride
Ethylene Chlorohydrin
Ethylene Diamine | 1
1
2
0
1 | 2
1
2
0
0 | 1
1
1
0
0 | 1
1
1
0
0 | 1 1 1 1 1 | Houghto-Safe 1010,
1055,1115,1120,1130
Hul-E-Mul
Hydrafluid 760
Hydrobromic Acid | 1 1 1 0 | 1 1 1 1 | 1
1
1 | 1 1 1 1 | 1
1
1 | Methyl Bromide
Methyl Butyl Ketone
Methyl Chloride
Methylene Chloride
Methyl Ethyl Ketone | 1
1
1
1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 0 1 1 1 | | Ethylene Glycol
Fatty Acids
Ferric Chloride
Ferric Nitrate
Ferric Sulfate | 1
0
3
0
3 | 2
0
3
3
3 | 1
1
3
1
1 | 1 1 3 1 1 | 1
1
1
1 | Hypo
Hydraulic Oil, Petroleum
Hydrochloric Acid, 15%
Hydrochloric Acid 37%
Hydrochloric Acid | 0
1
3
3
3 | 0
1
3
3
3 | 1 1 3 3 1 | 1 1 3 3 1 | 1
1
1
1
1 | Methyl Formate
Methyl Isobutyl Ketone
Methyl Methacrylate
Methyl Salicylate
MIL-L-2104 & 2104B | 1
1
0
1
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1
1
1 | ## Fluid/Corrosion **Compatibility Reference Table** 800-270-0333 Suitable Under Normal Circumstances 1 Acceptable 2 Not Recommended 3 No Information; Test Before Using 0 | MEDIA | RITH | AND ON THE STATE OF O | 2/3/3/ | Wales . | 5 5 6 5 5 5 5 5 5 5 | MEDIA | WILLIAM TO THE PARTY OF PAR | Was all and | 7/3/3/ | Sala | 3
 3 2
 4 2 | MEDIA | HIM | S AN SON OF STREET | 7/ | No. of the last | \$ 1.5 / B | |--|-----------------------|--|------------------|-----------------------|---------------------------------------|---|--|---|------------------|-----------|---------------------|---|-----------------------|-----------------------|-----------------------|--|-----------------------| | MIL-F-7083
MIL-H-5606
MIL-L-7808
MIL-O-6083
Milk | 3
1
1
1
1 | 1 1 1 1 3 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
1
1
1 | Pine Oil Plating Solution, Chrome Potassium Acetate Potassium Chloride | 0 0 0 3 | 1 0 0 2 | 1 3 1 2 | 1 | 0 1 1 | Soybean Oil
Stannic Chloride
Steam
Stearic Acid
Stoddard Solvent | 0
3
2
3
1 | | 1 0 1 2 1 | 1 0 1 1 1 1 | 1 1 1 1 1 1 | | Mineral Oil
Monochlorobenzene
Monethanolamine
Morpholine
(pure additive) | 1 1 1 0 | 1 1 1 0 | 1 1 1 1 | 1 1 1 1 | 1
1
0 | Potassium Cyanide
Potassium Dichromate
Potassium Hydroxide, 30%
Potassium Nitrate
Potassium Sulfate | 3
0
3
2
2 | 2 0 3 3 2 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | Styrene
Sucrose Solution
Sulfur 200°F
Sulfur Chloride
Sulfur Dioxide | 2
0
3
3
1 | 2 1 2 3 2 | 0
1
2
3
1 | 2
1
1
2
1 | 1
1
1
1 | | Mine Guard FR
Mobile HFA
Mine Water
Naphtha
Naphthalene | 1
1
0
1
0 | 1 1 1 2 0 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
0
1 | Progallic Acid
Propane
Propyle Acetate
Propyl Alcohol
Pydraul 60,F9,150,625, | 0 1 1 2 | 2 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 0 1 0 1 | Sulfur Trioxide
Sulfuric Acid 10%
Sulfuric Acid 98%
Sulfuric Acid, Furning
Sulfurous Acid 10% | 0
3
3
3
3 | 2 3 2 2 3 | 2
3
3
0
2 | 2 2 1 1 | 1
1
1
1
1 | | Naphthenic Acid
Natural Gas
Nickel Acetate
Nickel Chloride
Nickel Sulfate | 0
2
1
3
3 | 0
1
1
3
0 | 2 1 1 2 2 | 1
1
1
2
1 | 1
1
1
1 | & "E" Series
Pyridine 50%
Pydraul A-200
Pydraul 90,135,230,
312,540, & "C" Series | 1 1 1 1 | 1 0 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | Sulfurous Acid 75%
Sun Minesafe,
Sun Safe
Tannic Acid 10%
Tar, Bituminous | 3
1
3
2 | 3 1 2 1 | 3
1
1
1 | 1 1 1 | 1
1
1
1 | | Niter Coke
Nitric Acid, all
concentration
Nitric Acid,
Red Fuming | 3 | 3 3 3 | 2 2 2 | 2 2 | 1 1 | Pyro Gard CDR
Pyro Gard 43
Pyro Guard 53,55,51,42
Red Oil
Rosin | 1 1 1 2 1 | 1 1 1 2 3 | 1 1 1 2 1 | 1 1 1 1 1 | 1
1
1
1 | Tartaric Acid
Tellus (Shell)
Terpineol
Texaco 760
Hydrafluid | 0 1 0 | 0 1 0 1 | 2 1 0 1 | 2 1 0 1 | 1
1
1 | | Nitrobenzene
Nitroethane
Nitrogen, Gaseous
Nitrogen Tetroxide
NutoH | 1
1
1
0 | 1
0
1
0
1 | 1 1 0 1 | 1 1 2 1 | 1
1
1
0 | Safco-Sa fe T10,T20
Salicylic Acid
Salt Water
Santosafe W/G 15 to 30
Santosafe —3-0 | 3
0
3
4
1 | 3
0
3
1
1 | 1 1 3 1 1 | 1 1 1 1 1 | 1
0
1
1 | Texaco 766,763 (200-300)
Tin
Titanium
Tetrachloride
Toluene | 0
3
3
1 | 0 3 1 1 | 1 3 2 1 | 1 3 2 1 | 1
1
0
1 | | Nyvac 20,30,200FR
Nyvac Light
n- 0 ctane
Octyl Alcohol
Oil SAE | 1 1 1 2 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1
0
1 | Sewage
Shell IRUS 902,905
Shell FRM
Silicone Greases
Silicone Oils | 1 1 1 1 1 | 3 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1
1
0
0 | Toluene Diisocyanate
Transformer Oil
Transmission Fluid, Type A
Tributoxyethyl
Phosphate | 0 1 1 0 | 0 1 1 1 | 0 1 1 0 | 0
1
1 | 0
1
1 | | Oleic Acid
Oleum Spirits
Olive Oil
Oxalic Acid
Oxygen, Gaseous | 2
0
2
3
1 | 2 3 2 3 1 | 2 0 2 2 1 | 1 0 1 1 1 | 1
1
1
1 | Silver Nitrate
Skydol 500 & 7000
Soap Solutions
Soda Ash
Sodium Acetate | 2 0 1 2 1 | 2 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
1
1
0 | Tributyl Phosphate Trichloroethylene Tricresyl Phosphate Tung Oil Turpentine | 0
1
0
1
2 | 1
3
1
1
0 | 0 0 0 1 1 | 0
1
2
1
1 | 1
1
1
1 | | O-148 (NATO) Ozone Paint Palmitic Acid Peanut Oil | 1 1 3 1 | 1 0 1 1 | 1
1
2
1 | 1 1 1 1 | 1
1
1
1 | Sodium Bicarbonate
Sodium Bisulfite
Sodium Borate
Sodium Chloride
Sodium Cyanide | 2
0
0
3
3 | 2 1 1 2 2 | 1 1 1 2 1 | 1 1 1 1 | 1
1
1
1 | UCON Hydrolubes
Urea Solution 50%
Varnish
Vegetable Oils
Versilube | 1
0
2
0
1 | 1
1
2
1 | 1 1 1 1 | 1 1 1 1 1 | 1
1
0
1 | | Perchloric Acid
Perchloroethylene
Petroleum
Petroleum Ether
Petroleum Oils | 0
1
1
1 | 0 1 1 1 1 | 2 1 1 1 1 | 1
1
1
1 | 1 1 1 1 1 | Sodium Hydroxide 40%
Sodium Hypochlorite
Sodium Metaphosphate
Sodium Nitrate
Sodium Perborate | 3 3 2 3 | 2 3 3 1 3 | 1 3 1 2 1 | 1 2 1 2 1 | 1
1
1
1 | Vinegar
VInyl Chloride
Vital 4300,5310
W ater
Whiskey, Wines | 3
1
1
3 | 3 2 1 2 3 | 2
1
1
1
2 | 1
1
1
1 | 1
1
1
1
1 | | Phenol
Phorone
Phosphate Esters
Picric Acid
Pinene | 3
1
1
3
1 | 3
1
1
3
1 | 1 1 1 1 | 1 1 1 1 | 1
1
1
1 | Sodium Peroxide
Sodium Phosphate
Sodium Silicate
Sodium Sulfate
Sodium Thiosulfate | 3
3
1
1
3 | 3
0
1
1
3 | 1
1
1
1 | 1 1 1 1 | 1
1
1
1 | Xylene (Xylol) Zinc Acetate Zinc Chloride Zinc Sulfate | 0
1
3
3 | 2 1 3 3 | 2 1 2 2 | 2 1 1 1 1 | 1 1 1 1 |